The title and abstract read: Maximal Analytic Extension of the Kerr Metric* ROBERT H. BoYERt Department of Applied Mathematics, University of Liverpool, Liverpool, England AND RIcHarD W. LInDQUIsT Scott Laboratory of Physics, Wesleyan University, Middletown, Connecticut (Received 19 July 1966) Kruskal's transformation of the Schwarzschild metric is generalized to apply to the stationary, axi-ally symmetric vacuum solution of Kerr, and is used to construct a maximal analytic extension of the latter. In the low angular momentum case, a° < m°, this extension consists of an infinite sequence Einstein-Rosen bridges joined in time by successive pairs of horizons. The number of distinct asymptotically flat sheets in the extended space can be reduced to four by making suitable identifications. Several properties of the Kerr metric, including the behavior of geodesics lying in the equatorial plane, are examined in some detail. Completeness is demonstrated explicitly for a special class of geodesics, and inferred for all those that do not strike the ring singularity.
https://files.mastodon.social/media_attachments/files/110/781/114/603/827/244/original/54abc67b7f30493f.jpeg